18.2.0 ENGINEERING DRAWING AND DESIGN

18.2.1 Introduction

This module unit is designed to equip the trainee with the necessary skills and attitudes in Engineering drawing and design.

The module unit is intended to provide trainee with fundamentals of Engineering drawing and design using traditional equipment. The knowledge gained will be used in designing various products in structural fabrication and tool room processes.

Trainees undertaking this module unit will require knowledge of basic engineering drawing.

18.2.2 General Objectives

By the end of the module unit, the trainee should be able to: understand the principles of mechanical engineering components

understand the principles of Mechanical Engineering design design a product

draw assembly drawings

18.2.3 Module Unit Summary and Time Allocation

Engineering Drawing and Design

Code	Sub-Module	Content	Time Hrs
18.2.1	Gears	Uses of gearsConstructional Features	2
18.2.2	Screw Threads	HelixTypes of screws threadsParts of screw	6
18.2.3	Cams	 Types of CAM followers Types of CAM: Motion graphs: Cam profiles 	6
18.2.4	Bearings	Bearings and BushesBearing Applications	2
18.2.5	Limits and Fits	 Definition of terms of terms 	4

		 Types of Fits Dimensioning using Limits and fits Application of limits and fits 	
18.2.6	Fasteners and Locking Devices	Temporary fastenersPermanent Fasteners:	2
18.2.7	Assembly Drawing	 Orthographic Exploded views Pictorial Exploded views Parts list Sectional views: Hatching methods 	16
18.2.8	Engineering Design	 Principles of design Design consideration Functional object Risk management Material estimation and costing Cost benefit analysis 	6
18.2.9	Design of Jigs and Fixtures	 Definition of jigs and fixtures Elements of jigs Functions of jigs and fixtures Design steps Degree of freedom of location Design jigs and fixture General design principles Application of jigs and fixtures Machining on lathe 	12
18.2.10	Geometrical Tolerance	 Definition of Geometrical tolerancing Principles of tolerancing Application exercises 	6

18.2.11	Product Design and Specification	Feasibility studiesDesignFactors affecting product design	4
Total Time			66

18.2.1 **SPUR GEAR**

Theory

18.2.1T0 Specific Objectives By the end of the sub module the trainee should be able to:

- a) state the uses of spur gears in engineering
- b) construct a spur gear
- c) calculate the gear data from the given information

18.2.1C Competence

The trainee should have the ability to design involute gear teeth

Content

18.2.1T1 Uses of gears

- Torque reduction/multipli cation
- ii) Motion transmission
- iii) Speed reduction/increas
- iv) Motion direction change
- 18.2.1T2 Constructional Features
- 18.2.1T3 Gear data calculation i) Pitch circle

diameter

- ii) Module
- iii) Pressure angle
- iv) Clearance
- v) Base circle
- vi) Addendum
- vii) Dedendum

Suggested Learning Resources

- Engine gear i) models
- ii) Textbooks
- iii) The internet

18.2.2 **SCREW THREADS**

Theory

18.2.2TO Specific Objectives By the end of the sub module the trainee should be able to:

- a) construct helices with reference to single and multistart threads
- b) sketch and label the parts of a screw thread
- c) identify different types of screw threads

18.2.2C Competence

The trainee should have the ability to draw single start and multi start helices

engine

Content

18.2.2T1 Helix

- i) Single-start thread
- ii) Multi-start thread

18.2.2T2 Types of screws threads

- i) V-threads
- ii) Square threads
- iii) ACME
- iv) Buttress

18.2.2T3 Parts of screw thread

- i) Pitch
- ii) Crest
- iii) Root
- iv) Diameter

Suggested Learning Resources

- i) Models
- ii) Textbooks
- iii) The internet

18.2.3 CAMS

Theory

18.2.3T0 Specific Objectives By the end of the sub module the trainee should be able:

- a) explain the functions of a
- b) draw various types of cam followers
- c) construct various cam profiles for given motions

18.2.3C Competence

The trainee should have the ability to design cam profiles for different types of

Content

18.2.3T1 Functions of a cam

- i) Types
- ii) Radial disc
- iii) Cylindrical

18.2.3T2 Cam followers

- i) Knife edge
- ii) Roller
- iii) Flat follower

18.2.3T3 Cam profiles

- i) Uniform velocity
- ii) Uniform acceleration and retardation
- iii) Simple harmonic motion
- iv) Combined profile of the above motions

Suggested Learning Resources

- i) Engine camshaft model
- ii) Cam lobes model
- iii) Textbooks
- iv) The internet

18.2.4 BEARINGS

Theory

18.2.4T0 Specific Objectives By the end of the sub module the trainee should be able:

- a) explain the need for a bearing
- b) identify and sketch various types of bearings
- c) select a suitable bearing for use in a given part of a vehicle

drawings

18.2.5C Competence

The trainee should have the ability to select and use bearings

Content

- 18.2.4T1 Purpose of bearing
- 18.2.4T2 Bearings and Bushes
 - Ball bearing
 - ii) Roller bearing
 - iii) Taper
 - iv) Needle
 - v) Plane
 - vi) Bush bearing
- 18.2.4T3 Bearing Applications
 - i) Gearboxes
 - ii) Wheels and tyres
 - iii) Engines
 - iv) Lathe
 - v) Miller

Suggested Learning Resources

- i) Engine models
- ii) Gearbox models
- iii) Textbooks
- iv) The internet

18.2.5 LIMITS AND FITS

Theory

- 18.2.5T0 Specific Objectives
 By the end of the sub
 module the trainee
 should be able to:
 - a) define limits and fits
 - b) identify and apply the various types fits
 - c) use BS 4500, Kenya Bureau of Standard and ISO to dimension

18.2.5C Competence

The trainee should have the ability to apply limits and fits in mechanical designs

Content

- 18.2.5T1 Definition of terms of terms
 - i) Upper and lower limit
 - ii) Tolerance
 - iii) Unilateral
 - iv) Bilateral
 - v) Nominal size (Basic size)
 - vi) Hole-basis system
 - vii) Shaft-basis system
- 18.2.5T2 Types of Fits
 -) Clearance
 - ii) Transition
 - iii) Interference
 - iv) Applications
 - v) Engineering design and manufacture
- 18.2.5T3 Dimensioning
 - i) The BS 4500 A & BS 4500B charts
 - ii) Tolerancing

Suggested Learning Resources

- Text Books
- ii) The BS 4500 A & BS 4500B Charts
- iii) Internet

18.2.6 FASTENERS AND LOCKING DEVICES

Theory

18.2.6TO Specific Objectives By the end of the sub module the trainee should be able to:

- a) identify and draw temporary fastening devices
- b) identify and draw of permanent fastening devices
- c) sketch and draw types of locking devices

18.2.6C Competence

The trainee should have the ability to:

- Differentiate between permanent and temporary fasteners
- ii) Sketch and draw screws, nuts bolts and rivets

Content

18.2.6T1 Temporary fasteners

- i) Screws
- ii) Cap screws
- iii) Countersunk screws
- iv) Grub screws
- v) Hexagonal head screws
- vi) Nuts and bolts
- vii) Hexagonal
- viii) Square
- ix) Round
- x) Flat
- xi) Pins
- xii) Tapered cotter
- xiii) Split pins
- xiv) Keys and keyways
- xv) Woodruff

xvi)Straight

xvii) Tapered xviii) Round xix)Feather xx) Parallel rectangle

18.2.6T2 Permanent Fasteners:

- i) Rivets
- ii) Snap head
- iii) Pan head
- iv) Round countersunk
- v) Counter sunk
- vi) Hexagon slotted grub screw

18.2.6T3 Locking devices

Suggested Learning Resources

-) Fastening devices models
- ii) Text books and charts
- iii) The internet

18.2.7 ASSEMBLY DRAWING

Theory

18.2.7T0 Specific Objectives By the end of the sub module the trainee should be able to:

- a) draw
 orthographic
 projection from
 working drawing
 and assembly
 drawing
- b) draw various types of sectional views
- c) draw sectional views, plan and elevation of an assembled component

- d) produce a parts list for an assembled component
- 18.2.7C Competence

The trainee should have the ability to:

- i) Read and interpret exploded views
- ii) Produce working drawings
- iii) Produce sectional views of details that cannot be seen from orthographic
- iv) Prepare parts list

Content

- 18.2.7T1 Orthographic
 - i) Plan
 - ii) End elevation
 - iii) Front elevation
- 18.2.7T2 Sectional views:
 - i) Off-set sectional views
 - ii) Sectional front elevation
 - iii) End sectional elevation
 - iv) Sectional plan
 - v) Half sectional views
 - vi) Aligned sectional view
 - vii) Revolved sectional views
 - viii) Broken out sectional views
- 18.2.7T3 Hatching methods
 - i) Hatching lineii) Shading
- 18.2.7T4 Parts list
 - i) Part number

- ii) Part name
- iii) Part material
- iv) Number off
- v) Description

Suggested Learning Resources

- i) Textbooks
- ii) Drawing charts
- iii) The internet

18.2.8 ENGINEERING DESIGN

Theory

- 18.2.8T0 Specific Objectives
 By the end of the sub
 module the trainee
 should be able to:
 - a) explain principles of design
 - b) describe considerations to be observed in design work
 - c) design functional objects in Engineering
 - d) manage potential design risks
 - e) estimate and cost materials for a design
 - f) carry out a cost benefit analysis for the design

18.2.8C Competence

The trainee should have the ability to:

- Practice Design principles that meets user requirements
- ii) Carry out design strategies that

meet both the deadline and estimated budget

iii) The industry

Content

18.2.8T1 Principles of design

- i) Design brief
- ii) Analysis
- iii) Synthesis
- iv) Evaluation
- v) Implementation

18.2.8T2 Design consideration

- i) Ergonomics
- ii) Materials
- iii) Manufacturing methods
- iv) Casting
- v) Machining
- vi) Sintering
- vii) Fabrication
- viii) Hot and cold working

18.2.8T3 Functional object

- i) User
 - requirements

18.2.8T4 Risk Management

- i) Risk identification
- ii) Risk evaluation
- iii) Risk reduction and minimization

18.2.8T5 Estimation and costing

- i) Material Estimation
- ii) Tasks
- iii) Resources
- iv) Manufacturing costing
- v) Materials
- vi) Labor
- vii) Overheads
- 18.2.8T6 Cost benefit analysis

Suggested Learning Resources

- Text books
- ii) The internet

18.2.9T0 DESIGN OF JIGS AND FIXTURES

Theory

18.2.9T0 Specific Objectives By the end of the sub module unit, the

trainee should be able

- a) define a jig and a fixture
- b) explain the elements of Jigs and fixtures
- c) list functions of jigs and fixtures
- d) list the design steps of jigs and fixtures
- e) state the degree of freedom as applied to jigs and fixtures
- f) design jigs and fixtures for various applications

18.2.9C Competence

The trainee should have the ability to:

- Fabricate a jig for a given fabrication design
- ii) Design a jig for a given task

Content

18.2.9T1 Definition of jigs and

fixtures

- 18.2.9T2 Elements of jigs
 - i) Body
 - ii) Locating elements
 - iii) Tool guide
 - iv) Clamping elements
- 18.2.9T3 Functions of jigs and fixtures
 - i) Reduction of costs of operation
 - ii) Increase in production
- 18.2.9T4 Design steps
 - i) Sequence of the operation
 - ii) Location systems
 - iii) Clamping system
- 18.2.9T5 Degree of freedom of location
 - i) Two linear and rotary movement on axis OX
 - ii) Two linear and rotary movement on axis OY
 - iii) Two linear and rotary movement on axis OZ
- 18.2.9T6 Design jigs and fixture
 - i) Milling
 - ii) Drilling
 - iii) Machining on lathe
 - iv) General design principles
 - v) Location methods
 - vi) Clamping methods
 - vii) Loading and unloading process
 - viii) Work supports
 - ix) Stability and

- rigidity
- x) Clearance for chips
- xi) Coolant to the cutting edge
- xii) Application of jigs and fixtures
- xiii) Milling
- xiv) Drilling
- xv) Machining on lathe

Suggested Learning Resources

- i) Charts
- ii) Assorted jigs and fixtures
- iii) Work pieces

18.2.10 GEOMETRICAL TOLERANCING

Theory

18.2.10T0 Specific
Objectives
By the end of the sub
module unit, the
trainee should be able
to:

- a) define geometrical tolerancing
- b) state the general principles of geometrical tolerancing
- c) identify, draw and apply recommended symbols of tolerancing

18.2.10C Competence

The trainee should have the ability to apply geometric tolerancing to produce a given design task

Content

18.2.10T1 Definition of geometrical tolerancing

18.2.10T2 Principles of tolerancing

- i) Straightness
- ii) Parallelism
- iii) Flatness
- iv) Squareness
- v) Roundness
- vi) Datum
- vii) Cylindricity

18.2.10T3 Application exercises

Suggested Teaching/Learning Resources

- i) BS 308 geometrical tolerancing charts
- ii) Assorted drawing instruments
- iii) Trainers manuals

18.2.11 PRODUCT DESIGN AND ECIFICATIONS

Theory

18.2.11TO Specific Objectives

By the end of the sub module unit, the trainee should be able to:

- a) perform feasibility studies on simple designs
- b) describe the design specifications of

a product

c) describe factors affecting product design

Content

18.2.11T1 Feasibility studies

- i) Aim of feasibility studies
- ii) Functions of the design manufacture
- iii) Methods of design manufacture

18.2.11T2 Design

- i) Customer requirements
- ii) Company requirements

18.2.11T3 Factors affecting product design

- i) Material appearance (aesthetic value)
- ii) Method of production

18.2.11C Competence

The trainee should have the ability to design and specify the product using standard symbols

Suggested Teaching/Learning Resources

- i) Various designed products
- ii) wheel barrow
- iii) screw jack
- iv) textbooks